Chapter 1. Introduction Concepts of pattern and pattern recognition, A brief history of pattern recognition, Introduction of applications, methods and systems of pattern recognition, Related mathematical knowledge
Chapter 2. Clustering Concepts of distance clustering, Clustering criteria, Hierarchical clustering algorithm, Dynamic clustering algorithm
Chapter 3. Discriminant Functions Linear discriminant functions, Generalized linear discriminant functions, Pattern space and weight space, The perceptron algorithm, Potential function
Chapter 4. Statistical Decision Theory Bayes decision criteria, Minimum error rate classification, Bayesian classification for normal distribution, Mean vector and parameter estimation of covariance matrix
Chapter 5. Feature Selection and Generation Class separability measures, Feature selection, The Karhunen-Loeve Transform
Chapter 6. Neural Networks Introduction of artificial neural network, Feedforward neural network, Recurrent neural network, Stochastic neural network, Self-organizing neural network, Application design and development of ANN
Chapter 7. Syntactic Pattern Recognition Relational operation, Formal language theory, Syntax structure parsing by automata, Primitive selection, syntax analysis and grammatical induction
|